歡迎光臨
比特幣資訊網

幾分鐘速通RGB與RGB++協議設計:白話說明書

作者:Faust,極客web3 & BTCEden.org 聯創

隨着RGB++及相關資產發行的火熱,關於RGB與RGB++協議原理的討論逐漸成爲更多人關注的話題。但大家意識到,要理解RGB++,必須先理解RGB協議。

原始的RGB協議在技術構造上略爲晦澀,參考資料較爲零散,至今沒有多少系統性且較通俗易懂的參考資料,極客web3此前雖曾發表過兩篇關於RGB與RGB++的系統性解讀文章(可以看我們公號的歷史記錄),但據社區成員反饋,前述文章篇幅較亢長且太燒腦。

爲了讓更多人能更快理解RGB與RGB++協議,本文作者在香港活動期間,臨時趕工完成了一篇關於RGB與RGB++的簡短白話解讀,可以在幾分鐘內讀完,希望幫助更多社區愛好者更好、更直觀的理解RGB與RGB++

RGB協議:用戶要親自做數據驗證

RGB協議是一種特殊的P2P資產協議,是比特幣鏈下的計算系統,它在某些方面與支付通道類似:用戶要親自運行客戶端,自行驗證與自己有關的轉账行爲(Verify by yourself)。即便你只是一個資產接收者,也要先確定資產發送者的轉账聲明沒有錯誤,然後這筆轉账聲明才能生效。顯然這與傳統的資產發送與接收形式截然不同,我們將其稱之爲“交互式轉账”。

爲什么要這樣?原因在於,RGB協議爲了保障隱私,沒有採用比特幣和以太坊等傳統區塊鏈中的“共識協議”(數據一旦走共識協議,就會被網絡內幾乎所有節點都觀測到,隱私不好保障)。如果沒有大量節點都參與的共識流程,該如何保證資產變更是安全的?這裏用到名爲“客戶端驗證”的思想(Verify by yourself),你要自己運行客戶端,親自驗證和你相關的資產變動。

假設有個RGB用戶叫Bob,他認識Alice,Alice要給Bob轉來100枚TEST代幣。Alice生成了“Alice to Bob”的轉账信息後,要先把轉账信息和涉及的資產數據發送給Bob,讓他親自檢查一遍,確定無誤才會進入後續流程,最終成爲一筆有效的RGB轉账。所以說,RGB協議是讓用戶親自驗證數據有效性,取代傳統的共識算法。

但沒有了共識,不同RGB客戶端接收和存儲的數據都不一致,大家只在本地存儲與自己有關的資產數據,不知道別人的資產狀況,這在保護隱私的同時,也構成了“數據孤島”。如果有人聲稱有100萬枚TEST代幣,要轉給你10萬枚,你如何相信他?

在RGB網絡中,如果有人要給你轉账,必須讓他先出示資產證明,回溯資產從初始發行到多次轉手的歷史來源,確定要轉給你的Token沒問題,這就好比,當你收到來路不明的紙幣後,你要求對方說明這些紙幣的歷史來源,是否是指定的發行方制造的,以此來規避假幣。

(圖片來源:Coinex)

上述流程是發生在比特幣鏈下的,僅憑這些過程還無法讓RGB與比特幣網絡產生直接關聯。對此,RGB協議採用了名爲“single use seal”的思想,把RGB資產與比特幣鏈上的UTXO綁定起來,只要比特幣UTXO沒有被雙重消費,綁定的RGB資產就不會發生雙重支付,這樣就可以借助比特幣網絡來防止RGB資產發生“Re-organization”。當然,這需要在比特幣鏈上發布Commitment,並用到OP_Return操作碼。

在此梳理一下RGB協議的workflow:

1. RGB資產與比特幣UTXO有着綁定關系,而Bob擁有某些個比特幣UTXO。Alice要給Bob轉账100枚代幣,在接收資產前,Bob事先告訴Alice,應該用Bob的哪個比特幣UTXO綁定這些RGB資產。

(圖片來源:極客web3/ GeekWeb3)

  1. Alice構造一筆 “Alice to Bob” 的RGB資產轉账數據,附帶這些資產的歷史來源交給Bob去驗證。

  2. Bob在本地確認這些數據沒問題後,給Alice發送一個回執,告訴她:這筆交易可以通過了。

  3. Alice把這筆“Alice to Bob”的RGB轉账數據構建成一棵Merkle Tree,把Merkle Root發布到比特幣鏈上作爲Commitment,我們可以把Commitment簡單理解爲轉账數據的hash。

  4. 如果未來有人想確定,上述“Alice to Bob”的轉账真實發生過,他需要做兩件事:在比特幣鏈下獲取“Alice to Bob”的完整轉账信息,然後查驗比特幣鏈上是否存在對應的Commitment(轉账數據的hash),就可以了。

比特幣在此充當了RGB網絡的歷史日志,但日志上只記錄交易數據的hash/Merkle root,而非交易數據本身。由於採用了客戶端驗證和一次性密封,RGB協議具有極高的安全性;由於RGB網絡是由動態的用戶客戶端以P2P、無共識的形態組成的,你可以隨時更換交易對手方,不需要把交易請求發送給某些個數量有限的節點,所以RGB網絡具有極強的抗審查性,這種組織形式要比以太坊等大型公鏈更抗審查。

(圖片來源:BTCEden.org )

當然,極高的安全性與抗審查性、隱私保護,帶來的代價也是明顯的:用戶要自己運行客戶端驗證數據,如果對面發過來一些轉手幾萬次、歷史記錄很長的資產,你也要頂着壓力全部驗證完;

此外,每筆交易都要求雙方進行多次通訊,接收方要先驗證發送方的資產來源,然後發送回執,批准發送方的轉账請求。這個過程中,雙方之間至少要產生三次消息傳遞。這種“交互式轉账”和大多數人所習慣的“非交互式轉账”嚴重不符合,你能想象,別人要給你轉錢,還要把交易數據發給你來檢查,得到你的回執消息後,才能完成轉账流程嗎?

此外,我們曾提到,RGB網絡沒有共識,每個客戶端都是孤島,不利於把傳統公鏈上的復雜智能合約場景遷移到RGB網絡中,因爲以太坊或Solana上的Defi協議都依賴於全局可見、數據透明的账本。如何優化RGB協議,提高用戶體驗並解決上述問題?這成爲了RGB協議繞不开的一個問題。

RGB++:客戶端驗證變爲樂觀的托管

名爲RGB++的協議提出了新思路,它把RGB協議與CKB、Cardano、Fuel等支持UTXO的公鏈結合起來,由後者作爲RGB資產的驗證層與數據存儲層,把原本由用戶進行的數據驗證工作,移交給CKB等第三方平台/公鏈,這相當於把客戶端驗證替換爲“第三方去中心化平台做驗證”,只要你信任CKB、Cardano、Fuel等公鏈即可,如果你不信任他們,也可以切換回傳統的RGB模式。

RGB++和原始的RGB協議,理論上是可以彼此兼容的,並不是有他無我。

要實現上面提到的效果,需要借助一種名爲“同構綁定”的思想。CKB和Cardano等公鏈有自己的拓展型UTXO,它比BTC鏈上的UTXO多出了可編程性。而“同構綁定”,就是將CKB、Cardano、Fuel鏈上的拓展型UTXO作爲RGB資產數據的“容器”,把RGB資產的參數寫入到這些容器中,在區塊鏈上直接展示出來。每當RGB資產交易發生時,對應的資產容器也可以呈現出相似特徵,就像是實體和影子的關系一樣,這便是“同構綁定”的精髓。

(圖片來源:RGB++ LightPaper)

For example,假如Alice擁有100枚RGB代幣,以及比特幣鏈上的UTXO A,同時在CKB鏈上有一個UTXO,這個UTXO上標記着“RGB Token Balance:100”,解鎖條件與UTXO A有關聯。

如果Alice想把30枚代幣送給Bob,可以先生成一個Commitment,對應的聲明是:把 UTXO A關聯的RGB代幣,轉移30枚給Bob,70枚轉給自己控制的其他UTXO。

之後,Alice在比特幣鏈上花費UTXO A,發布上述聲明,然後在CKB鏈上發起交易,把承載100枚RGB代幣的UTXO容器消費掉,生成兩個新容器,一個容納30枚代幣(給Bob),一個容納70枚代幣(Alice控制)。在此過程中,驗證Alice的資產有效性與交易聲明有效性的任務,是由CKB或Cardano等網絡節點走共識來完成的,不需要Bob介入。此時,CKB和Cardano等充當了比特幣鏈下的驗證層與DA層。

(圖片來源:RGB++ LightPaper)

所有人的RGB資產數據都存放在CKB或Cardano鏈上,具有全局可驗證的特性,利於Defi場景的實現,比如流動性池和資產質押協議等。當然上述做法也犧牲了隱私性,本質是在隱私和產品易用性之間做取舍,如果你追求極致的安全與隱私,可以切換回傳統RGB模式;如果你不在意這些,就可以放心採用RGB++的模式,完全看你個人的需求。(其實借助CKB和Cardano等公鏈強大的功能完備性,可以借助ZK來實現隱私交易)

這裏要強調,RGB++引入了一個重要的信任假設:用戶要樂觀的認爲,CKB/Cardano這條鏈,或者說由大量節點靠共識協議組成的網絡平台,是可靠無誤的。如果你不信任CKB,也可以遵循原始RGB協議中的交互式通訊與驗證流程,自己運行客戶端。

在RGB++協議下,用戶無需跨鏈即可直接用比特幣账戶,操作自己在CKB/Cardano等UTXO鏈上的RGB資產容器,只需要借助上述公鏈中UTXO的特性,把Cell容器的解鎖條件設定爲與某個比特幣地址/比特幣UTXO相關聯即可。如果RGB資產交易雙方信得過CKB的安全性,甚至不必頻繁的在比特幣鏈上發布Commitment,可以在許多筆RGB轉账進行後,再匯總發送一個Commitment到比特幣鏈上,這被稱爲“交易折疊”功能,可以降低使用成本。

但要注意,同構綁定採用的“容器”,需要支持UTXO模型的公鏈,或是在狀態存儲上有類似特徵的基礎設施,EVM鏈不太適合,會遇到很多坑。(此話題可以單獨成文,涉及的內容較多,有興趣的讀者可以參考極客web3此前文章 《RGB++與同構綁定:CKB、Cardano與Fuel如何賦能比特幣生態》;

綜合來看,適合實現同構綁定的公鏈/功能拓展層,應該具有以下特性:

  1. 使用UTXO模型或類似的狀態存儲方案;

  2. 具有相當的UTXO可編程性,允許开發者編寫解鎖腳本;

  3. 存在UTXO相關的狀態空間,可以存儲資產狀態;

  4. 存在比特幣相關橋或者輕節點;

鄭重聲明:本文版權歸原作者所有,轉載文章僅為傳播信息之目的,不構成任何投資建議,如有侵權行為,請第一時間聯絡我們修改或刪除,多謝。


標題:幾分鐘速通RGB與RGB++協議設計:白話說明書

地址:https://www.globalstockvip.com/article/66772.html